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VIECHANICS OF MATERIALS e

Concept of Stress

» The main objective of the study of mechanics
of materials is to provide the future engineer
with the means of analyzing and designing
various machines and load bearing structures.

» Both the analysis and design of a given
structure involve the determination of stresses
and deformations. This chapter is devoted to
the concept of stress.
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* The structure is designed to
support a 30 kN load

d = 20 mm

* The structure consists of a
boom and rod joined by pins
(zero moment connections) at
the junctions and supports

GO mm

_* Perform a static analysis to
@J"  determine the internal force in
cach structural member and the
reaction forces at the supports

RO mm
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Structure Free-Body Diagram

 Structure is detached from supports and
the loads and reaction forces are indicated

 Conditions for static equilibrium:
>Me=0=A4,(0.6m)-(30kN)0.8m)
A, =40kN
D F,=0=4,+C,
C,=-A, =—40kN
> F,=0=A4,+C,~30kN=0

4,+C, =30kN

. Ay and Cy can not be determined from

s0kN  these equations
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Component Free-Body Diagram

C

* In addition to the complete structure, each
component must satisfy the conditions for
static equilibrium

« Consider a free-body diagram for the boom:
> Mp=0=-A4,(0.8m)

A, =0
y
substitute into the structure equilibrium
equation
C, =30kN

e Results:
A=40kN—» C,=40kN« C, =30kNT

Reaction forces are directed along boom
and rod
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* The boom and rod are 2-force members, 1.€.,
the members are subjected to only two forces
which are applied at member ends

* For equilibrium, the forces must be parallel to
to an axis between the force application points,
equal 1n magnitude, and in opposite directions

« Joints must satisfy the conditions for static
equilibrium which may be expressed in the
form of a force triangle:

ZFB :0
B
Fu  Fpc 30kN
4 5 3

30 kN FAB = 40kN FBC =50kN
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Can the structure safely support the 30 kN
load?

From a statics analysis

F =40 kN (compression)
Fgo=50kN (tension)

At any section through member BC, the
internal force 1s 50 kN with a force intensity
or stress of

P 50x10°N

Opc=—= =159 MPa
A 314x10°m?

From the material properties for steel, the
allowable stress is

Oj11 = 165 MPa

Conclusion: the strength of member BC is
adequate
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Dr. M. Aghayi

* Design of new structures requires selection of
appropriate materials and component dimensions
to meet performance requirements

For reasons based on cost, weight, availability,
etc., the choice 1s made to construct the rod from
aluminum (o ,,~= 100 MPa). What is an
appropriate choice for the rod diameter?

3
By B S0AUN 56,1070 m?

o 100x10°Pa

-6_2
d=‘/4A=\/4(500X10 m )=2.52><10_2m=25.2mm
T T

 An aluminum rod 26 mm or more in diameter 1s
adequate
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CHANICS OF MATERIALS

Axial Loading: Normal Stress

The resultant of the internal forces for an axially
loaded member is normal to a section cut
perpendicular to the member axis.

The force intensity on that section is defined as
the normal stress.

o= lim AF O e = L
A4—0 A4 we 4

The normal stress at a particular point may not be
equal to the average stress but the resultant of the
stress distribution must satisfy

P=0,,.4=[dF = [cdA

A

The detailed distribution of stress is statically
indeterminate, i.e., can not be found from statics
alone.
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\‘ m&‘x‘m Beer ¢ Johnston  DeWolf
Centric & Eccentric Loading

* A uniform distribution of stress in a section
infers that the line of action for the resultant of

the internal forces passes through the centroid
of the section.

-

A uniform distribution of stress is only
possible if the concentrated loads on the end
sections of two-force members are applied at
the section centroids. This is referred to as
centric loading.

 If a two-force member is eccentrically loaded,
then the resultant of the stress distribution in a
section must yield an axial force and a
moment.

» The stress distributions in eccentrically loaded
members cannot be uniform or symmetric.

S D M. Aghayi WhatsApp: +989394054409 1-11
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Shearing Stress

_'%sé_ Besta.ir Dr. M. Aghayl

Forces P and P’ are applied transversely to the
member AB.

Corresponding internal forces act in the plane
of section C and are called shearing forces.

The resultant of the internal shear force
distribution is defined as the shear of the section
and 1s equal to the load P.

The corresponding average shear stress is,

P
Tave = 2

Shear stress distribution varies from zero at the
member surfaces to maximum values that may be
much larger than the average value.

The shear stress distribution cannot be assumed to
be uniform.
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\‘ m&x‘m Beer  Johnston ° DeWolf
Shearing Stress Examples

Single Shear

] V] [A
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VIECHANICS OF MATERIALS Beer - Jonneion . Dowor
Bearing Stress in Connections

 Bolts, rivets, and pins create
stresses on the points of contact
or bearing surfaces of the
members they connect.

 The resultant of the force
distribution on the surface is
equal and opposite to the force
exerted on the pin.

« Corresponding average force
intensity 1s called the bearing
stress,
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Stress Analysis & Design Example

r d = 25 mm
C
?3; o  Would like to determine the
Flat end Q .%'

stresses in the members and
connections of the structure
shown.

* From a statics analysis:

600 mm o ONT VIEW

F,3=40 kN (compression)
Fp-=50KkN (tension)

e Must consider maximum
normal stresses in AB and
BC, and the shearing stress

END VIEW and bearing stress at each
30 mn pinned connection
] 1 20 mim
B

4




VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Rod & Boom Normal Stresses

* The rod is in tension with an axial force of 50 kN.
r A d =25 mm
S /A At the rod center, the average normal stress in the

%g,' g circular cross-section (4 = 314x10°m?) is 65~ = +159
L TC MPa.

» At the flattened rod ends, the smallest cross-sectional
area occurs at the pin centerline,

A =(20mm )40mm —25mm) = 300x10™°m?

P 50x10°N

OBC,end = —, =

_ —167MPa
A 300x10 %m?

* The boom 1s in compression with an axial force of 40
kN and average normal stress of —26.7 MPa.

e The minimum area sections at the boom ends are
unstressed since the boom 1s in compression.
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Pin Shearing Stresses

* The cross-sectional area for pins at 4, B,
and C,

o) 25mm 2 6 2
A=nr-=rx 5 =491x10" "m

A§-rf = 25 mm
n%r x»* * The force on the pin at C is equal to the
% force exerted by the rod BC,

P 50x10°N

’Z'C = — =
; 4 4911070 m?2

=102MPa

* The pin at 4 1s in double shear with a

d =285 total force equal to the force exerted by
- the boom 4B,
F, —] y—
_— == 201{1\2 5 =40.7MPa
F), et | " ’ 4 491x10°m
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VIECHANICS OF MA

Pin Shearing Stresses

| A
B
00
(D
(D
=
(S
o
-y
=
)
"
o
=
O
(1)
S
=3
=

a l'l B

0kN g « Divide the pin at B into sections to determine
; { the section with the largest shear force,
Pin B { v B L(‘l_ 15 kN PEzlskN

50 kN P; =25kN (largest)

(a)

P,  Evaluate the corresponding average
shearing stress,

E P 25KN
D TB.ave = G -
’ A 491x10 %m?

=50.9MPa

sQ = I5kN

b
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VIECHANICS OF MA

Pin Bearing Stresses

| A
J>
00
(D
(D
=
(S
o
-y
=
)
"
o
=
O
(1)
S
=3
=

* To determine the bearing stress at A in the boom AB,
we have r =30 mm and d = 25 mm,

P 40kN

" td (30mm)25mm)

=53.3MPa

Op

» To determine the bearing stress at 4 in the bracket,
we have r = 2(25 mm) = 50 mm and d = 25 mm,

P 40kN

Tt (50mm )(25mm)

o} =32.0MPa
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.1

In the hanger shown, the upper portion of link ABC is 3 in. thick and the
lower portions are each ; in. thick. Epoxy resin is used to bond the upper
and lower portions together at B. The pin at A has a 3-in. diameter, while a
;-in.-diameter pin is used at C. Determine (a) the shearing stress in pin A,
(b) the shearing stress in pin C, (c¢) the largest normal stress in link ABC,
(d) the average shearing stress on the bonded surfaces at B, and (e) the
bearing stress in the link at C.

Dr. M. Aghayi WhatsApp: +989394054409 1-20



VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.1

7 jﬂ ~ C
| i
| e
500 Ib

;4.
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\‘ mﬁ. \‘ A : : Beer ¢ Johnston  DeWolf

Sample problem 1.1

ip__m 1 D,
A D

5 in. |
S 10in—H

E r@ \.EJ J_//
L‘I C
500 Ib

Fig.1 Free-body diagram of
hanger.
Free Body: Entire Hanger. Since the link ABC is a two-force member

(Fig. 1), the reaction at A is vertical; the reaction at D is represented by its
components D, and D,. Thus,

+2> XM, = 0: (5001b)(151in.) — F4(101in.) =0
Fic = +750 1b Fi.c =750 1b tension

Dr. M. Aghayi WhatsApp: +989394054409 1-22




VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.1

750 1b 4

%-in. diameter

Fig. 2 Pin A.

a. Shearing Stress in Pin A. Since this 3-in.-diameter pin is in single
shear (Fig. 2), write
Fuc 750 1b

——= 74 = 6790 psi
A 7(0.375in.)° ’ .

Tp —
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.1

%-in. diameter 5 F,~=3751b

Fig.3 PinC.

b. Shearing Stress in Pin C. Since this j-in.-diameter pin is in double
shear (Fig. 3), write
%FAC B 375 1b
A 17(025in.)>

Tc =

T = 7640 psi

2% Bemtair Dr. M. Aghayi WhatsApp: +989394054409 1-24




VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.1

3 5
/’“Eln.
1.25 iﬁf”'\

l %—in. diameter
Fyc

Fig.4 Link ABC section at A.

c. Largest Normal Stress in Link ABC. The largest stress is found
where the area is smallest; this occurs at the cross section at A (Fig. 4) where
B the ;-in. hole is located. We have

750 1b 750 1b ,
= : e 5 oy = 2290 psi
et (3n)(1.25in. — 0.3751n.) 0.328 in

K

Oy =

=S
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.1

Fi=Fy=1F,-=3751b

=

Fig. 5 Element AB.
d. Average Shearing Stress at B. We note that bonding exists on

on each side is F; = (750 Ib)/2 = 375 1b. The average shearing stress on each
surface is

F 75 1b
Tp= — = _3 : 75 = 171.4 psi
A (1.251n.)(1.75 1n.)
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.1

I—in. diameter

Fig. 6 Link ABC section at C.

e. Bearing Stress in Link at C. For each portion of the link (Fig. 6),
F, = 375 Ib, and the nominal bearing area is (0.25 in.)(0.25 in.) = 0.0625 in’.

Fi  375Db
A 0.0625 in

Op = o, = 6000 psi
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VIECHANICS OF MATERIALS

Sample problem 1.2

The steel tie bar shown is to be designed to carry a tension force of mag-
nitude P = 120 kN when bolted between double brackets at A and B. The
bar will be fabricated from 20-mm-thick plate stock. For the grade of steel
to be used, the maximum allowable stresses are 6 = 175 MPa, 7 = 100 MPa,
and o, = 350 MPa. Design the tie bar by determining the required values
of (a) the diameter d of the bolt, (b) the dimension b at each end of the bar,

and (c¢) the dimension /& of the bar.

Dr. M. Aghayi
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.2

Fy= 5P
Fig.1 Sectioned bolt.

a. Diameter of the Bolt. Since the bolt is in double shear (Fig. 1),

F, 60 kN 60 kN
t=—=——  100MPa=+— d=27.6mm
A Eﬂ'd Effd

Use d = 28 mm
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k‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.2

Fig.2 Tie bar geometry.

At this point, check the bearing stress between the 20-mm-thick plate (Fig. 2)
and the 28-mm-diameter bolt.

P 120 kN
~td ~ (0.020 m)(0.028 m)

= 214 MPa < 350 MPa OK

Op
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.2

Fig. 3 End section of tie bar.
b. Dimension b at Each End of the Bar. We consider one of the

end portions of the bar in Fig. 3. Recalling that the thickness of the steel
plate 1s t+ = 20 mm and that the average tensile stress must not exceed

175 MPa, write

1
5 P 60 kN

6=>— 175MPa = a = 17.14 mm
ta (0.02 m)a

b=d+ 2a =28 mm + 2(17.14 mm b = 62.3 mm
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Sample problem 1.2
t =20 mm

~ /4

P =120 kN

Fig.4 Mid-body section of tie bar.

c. Dimension h of the Bar. We consider a section in the central
portion of the bar (Fig. 4). Recalling that the thickness of the steel plate is
t = 20 mm, we have

P 120 kN
— 175 MPa = h = 34.3 mm
th (0.020 m)h

Use h = 35 mm
Dr. M. Aghayi WhatsApp: +989394054409 1-32
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Stress in Two Force Members

» Axial forces on a two force
member result in only normal
stresses on a plane cut
perpendicular to the member axis.

« Transverse forces on bolts and
_— pins result in only shear stresses
= B R Eg on the plane perpendicular to bolt
— " or pin axis.

ih)

» Will show that either axial or
\ i
. transverse forces may produce both
normal and shear stresses with respect
to a plane other than one cut
perpendicular to the member axis.
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k‘ mﬁ‘ \‘ A : : Beer ¢ Johnston  DeWolf

Stress on an Oblique Plane

 Pass a section through the member forming
an angle @ with the normal plane.

* From equilibrium conditions, the
distributed forces (stresses) on the plane
must be equivalent to the force P.

* Resolve P into components normal and
tangential to the oblique section,
F = Pcosé V =Psin@

* The average normal and shear stresses on
the oblique plane are

F Pcos@ P )
o= = = cos”~ @
49 A 4
= cosd
T = v = Psing _ Psmé’cos@
49 Ao A
cosd

Dr. M. Aghayi WhatsApp: +989394054409 1-34



VIECHANICS OF MATERIALS N
Maximum Stresses

= » * Normal and shearing stresses on an oblique
‘_’ plane

_'_-h\

{a) Axial loading o= £C082 0 1= ﬁsin 0 cosO

The maximum normal stress occurs when the

(B) Stresses for =0 reference plane 1s perpendicular to the member
axis,
o'= PI2A, p
Om = % T' =0
.= PAR2A,
(c) Stresses for 0 = ﬁ° * The maximum shear stress occurs for a plane at

+ 45° with respect to the axis,

l %,/< T, :%sin45 cos45:%=a’

a'= PrREaA,
() Stresses for 8 = —45°

e LR Dr M. Aghayi WhatsApp: +989394054409 1-35



VIECHANICS OF MATERIALS

Stress Under General Loadings

« A member subjected to a general
combination of loads 1s cut into

two segments by a plane passing
through QO

» The distribution of internal stress
components may be defined as,

o i AF”
— 11m
) AA—0 AA

AV AVX
. y . z

Tyy = llIm —— 74 = lim
Vo0 M T 50 M

» For equilibrium, an equal and
opposite internal force and stress
distribution must be exerted on

z : the other segment of the member.

WhatsApp: +989394054409



VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

State of Stress

 Stress components are defined for the planes
cut parallel to the x, y and z axes. For
equilibrium, equal and opposite stresses are
exerted on the hidden planes.

e The combination of forces generated by the
stresses must satisfy the conditions for
equilibrium:

_ ZFx:sz:ZFz:O
' ZMx:zMy:ZMZ:O

* Consider the moments about the z axis:
i > M, =0=(r,Ad)a—(r,Ad)a

Txy — Tyx

ki fwih _ .
- e similarly, 7= and 7 -7,

r AA=—t— It follows that only 6 components of stress are
Yo, AA required to define the complete state of stress

S D M. Aghayi WhatsApp: +989394054409 1-37
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Factor of Safety

Structural members or machines Factor of safety considerations:
must be designed such that the - uncertainty in material properties
working stresses are less than the .

uncertainty of loadings

* uncertainty of analyses

* number of loading cycles
* types of failure

ultimate strength of the material.

FS = Factor of safety

o ultimate stress
FS =—4% =

e maintenance requirements and
deterioration effects

« 1mportance of member to structures
integrity

* risk to life and property

* influence on machine function

Call ~ allowable stress

g D\ Aghayi WhatsApp: +989394054409 1-38



k‘ m&‘x‘m Beer ¢ Johnston  DeWolf
Sample problem 1.3

Two loads are applied to the bracket BCD as shown. (a) Knowing that the
control rod AB i1s to be made of a steel having an ultimate normal stress of
600 MPa, determine the diameter of the rod for which the factor of safety
with respect to failure will be 3.3. (b) The pin at C is to be made of a steel
having an ultimate shearing stress of 350 MPa. Determine the diameter of
the pin C for which the factor of safety with respect to shear will also be
3.3. (¢) Determine the required thickness of the bracket supports at C, know-
ing that the allowable bearing stress of the steel used is 300 MPa.

dAB

50 kN 15 kN

D

L—D.B m~—|*—0.3 m-—-

Dr. M. Aghayi WhatsApp: +989394054409 1-39
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Sample problem 1.3 SR -

IR

0.6 m

Fig.1 Free-body diagram of bracket.
Free Body: Entire Bracket. Using Fig. 1, the reaction at C is represented

by its components C, and C,.

+22ZM-=0: P(0.6 m) — (50 kN)(0.3 m) — (15 kN)(0.6 m) =0 P =40 kN
= C,.= 40 kN

BE, = C, = 65 kN C=VC?+C2=763kN

Dr. M. Aghayi WhatsApp: +989394054409 1-40




k‘ m&‘x‘m Beer ¢ Johnston  DeWolf
Sample problem 1.3

a. Control Rod AB. Since the factor of safety is 3.3, the allowable
stress 18

oy _ 600 MPa

= = = 181.8 MPa
F.S. 3.3

a1

For P = 40 kN, the cross-sectional area required is

A L =220 X 107° m*
= 5 T 181.8 MPa m

Arg = gdjg =220 x 10~ m? d, = 16.74 mm

Dr. M. Aghayi WhatsApp: +989394054409 1-41
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Sample problem 1.3 C

Fig.2 Free-body diagram
of pin at point C.
b. Shear in Pin C. For a factor of safety of 3.3, we have

7y 350 MPa
FS. 33

= 106.1 MPa

Tan =

As shown in Fig. 2 the pin is in double shear. We write

C/2 (163kN)/2

_ 2
o T 1061 Mpa - Jo0mm

Arcq ==

=f—ld§- = 360 mm? de = 21.4 mm Use: dp = 22 mm

Dr. M. Aghayi WhatsApp: +989394054409 1-42



k‘ mq:{. \‘ A : : Beer  Johnston ° DeWolf
Sample problem 1.3

d=22m;/\;/; W W

Fig. 3 Bearing loads at bracket support
at point C.

c. Bearing at C. Using d = 22 mm, the nominal bearing area of each
bracket is 22¢. From Fig. 3 the force carried by each bracket is C/2 and the
B allowable bearing stress is 300 MPa. We write

C/2 _ (763 kN)/2

A= - = 127.2 mm”
O,11 300 MPa

t =5.78 mm Use: t = 6 mm
WhatsApp: +989394054409 1-43




k‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.4

The rigid beam BCD is attached by bolts to a control rod at B, to a hydraulic
cylinder at C, and to a fixed support at D. The diameters of the bolts used
are: dg = dp = % n., de = % in. Each bolt acts in double shear and is made
from a steel for which the ultimate shearing stress is 7;; = 40 ksi. The control
rod AB has a diameter d, = 1= in. and is made of a steel for which the ultimate
tensile stress is o;; = 60 ksi. If the minimum factor of safety is to be 3.0 for
the entire unit, determine the largest upward force that may be applied by the
hydraulic cylinder at C.
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.4

B(i a 1'}0
B D

,-c— 6 in.—=——38 in.—-‘

Fig.1 Free-body diagram of beam BCD.

Free Body: Beam BCD. Using Fig. 1, first determine the force at C in
terms of the force at B and in terms of the force at D.

+23M, = 0: B(14 in.) — C(8 in.) = 0 C=1750B (1)
+23My = 0: —D(14 in.) + C(6 in.) = 0 C=233D (2

Dr. M. Aghayi WhatsApp: +989394054409 1-45




\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.4

Control Rod. For a factor of safety of 3.0

Oy _ 60 kSl
F.S. 3.0

= 20 ks1

0.1 =

The allowable force in the control rod is

B = o,(A) = (20 ksi)in( in.)* = 3.01 kips

Using Eq. (1), the largest permitted value of C 1s
C = 1.750B = 1.750(3.01 kips) C =527 kips

Dr. M. Aghayi WhatsApp: +989394054409 1-46



\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.4

n.

3
8

Fig. 2 Free-body diagram
of pin at point B.

&l Bolt at B. 7, = 7y/F.S. = (40 ksi)/3 = 13.33 ksi. Since the bolt is in
double shear (Fig. 2), the allowable magnitude of the force B exerted on the

bolt is
B =2F, = 2(zyA) = 2(13.33 ksi) G7) G in.)” = 2.94 kips

From Eq. (1), C = 1.750B = 1.750(2.94 kips) C = 5.15 kips
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Sample problem 1.4

Fig. 3 Free-body
diagram of pin at point C.

Bolt at D. Since this bolt is the same as bolt B, the allowable force is
D = B = 2.94 kips. From Eq. (2)

C = 2.33D = 2.33(2.94 kips) C = 6.85 kips

Bolt at C. We again have 7,; = 13.33 ksi. Using Fig. 3, we write

C =2F, = 2(z;3A) = 2(13.33ksi)G#)(3in.)*  C = 5.23 kips

Dr. M. Aghayi WhatsApp: +989394054409 1-48




\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample problem 1.4

Summary. We have found separately four maximum allowable values of the
force C. To satisty all these criteria, choose the smallest value. € = 5.15 kips

] [V] A
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Stress & Strain: Axial Loading

 Suitability of a structure or machine may depend on the deformations in
the structure as well as the stresses induced under loading. Statics
analyses alone are not sufficient.

» Considering structures as deformable allows determination of member
forces and reactions which are statically indeterminate.

* Determination of the stress distribution within a member also requires
consideration of deformations in the member.

» Chapter 2 1s concerned with deformation of a structural member under
axial loading. Later chapters will deal with torsional and pure bending
loads.
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VIECHANICS OF MATERIALS

Normal Strain

(i) b

Fig. 2.1
P 2P P

O = — = stress = =_
A 24 A
o . o

& = — = normal strain = Z
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Stress-Strain Test

pr

'

shown in this chapter. Fig. 2.8 Test specimen with tensile load.

4 i
A S b
: i |

Fig. 2.7 This machine is used to test tensile test specimens, such as those

Dr. M. Aghayi WhatsApp: +989394054409 2-6
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Stress-Strain Diagram: Ductile Materials

BB i i T 1 )
G'BL} ! Rupture oy Rupture
! X—F kT
| | |
— 40 i | ~ 40 !
Z oy o Z o i
e r p—
) E | Op 5 | i Ty
20 : i 20 H! |
|
| -t :-i | |
I Strain-hardening Necking I i
I I I ¥ - 1 I Y €
I 002 02 025 | 0.2
(.0012 (.004
(a} b (a) Low-carbon steel (b) Aluminum alloy
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VIECHANICS OF MATERIALS Beor .
Stress-Strain Diagram: Brittle Materials

o "
Hupture
(_T[- = frll; _______________

13
Fig. 2.11 Stress-strain diagram for a typical

£
@ brittle material.
>
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Hooke’s Law: Modulus of Elasticity

/{Eﬂht‘d. tempered
alloy steel (A709) « Below the yield stress

o=FE¢
ﬂglﬁ:ength, low-alloy E = Youngs Modulus o.r |
steel (A992) Modulus of Elasticity

 Strength is affected by alloying,
Pure iron heat treating, and manufacturing
- process but stiffness (Modulus of

Elasticity) is not.

Carbon steel (A36)

Fig. 2.16 Stress-strain diagrams for
iron and different grades of steel.
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Elastic vs. Plastic Behavior

 If the strain disappears when the
Rupture stress 1s removed, the material 1s
said to behave elastically.

* The largest stress for which this
occurs 1s called the elastic limit.

* When the strain does not return
to zero after the stress is
removed, the material is said to
behave plastically.

A D
Fig. 2.18

2% Bemtair Dr. M. Aghayi WhatsApp: +989394054409 2-10




VIECHANICS OF MATERIALS Beer - Jonneion . Dowor
Fatigue

50 [~ « Fatigue properties are shown on
S-N diagrams.
40
—~ Steel (1020HR) .
2 30 « A member may fail due to fatigue
7 at stress levels significantly below
£ 20 the ultimate strength if subjected
- Aluminum (2024) to many loading cycles.
| | | | | | * When the stress 1s reduced below
0% 10t 100 10 107 105 10° the endurance limit, fatigue
Number of completely reversed cycles failures do not occur for any
Fig. 2.21 number of cycles.
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Deformations Under Axial Loading

From Hooke’s Law:

o=FL¢ =2 = L8
E AE
* From the definition of strain:
o
E=—
L
« Equating and solving for the deformation,
, PL
_é_ 5=k
T AE

A

With variations in loading, cross-section or

Fia. 2.22 material properties,
S = 3 Pl'Li
i AiE;

o R WhatsApp: +989394054409




VIECHANICS OF MATERIALS Beer - Johnston - Dewolr
Example 2.1

SOLUTION:
]  Divide the rod into components at
75 kips 15 kips . . .
. the load application points.
-l—i-{—l—l-l-ll— ]{j n.—
12 in. 12 in,

* Apply a free-body analysis on each
component to determine the

E =29x10°%psi .
<V Pt internal force

D=107m. d=0.618 1.

 Evaluate the total of the component

Determine the deformation of deflections.

the steel rod shown under the
given loads.
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VIECHANICS OF MATERIALS Beer - Johnston - Dewolr
Example 2.1

SOLUTION: * Apply free-body analysis to each
e Divide the rod into three component to determine internal forces,
components: B =60x10’1b
A B¢ 5 P, =-15x10°1b
MR 30 kips P, =30x101b
(b i__i Li['m i 45 kips :
| 5 ? « Evaluate total deflection,
P, ————

5:ZPiLi _1[ AL Bl Bl
4 A A4

1 {(60><103)12 . [15x10% )12 . (3O><103)16}
29x10° 0.9 0.9 0.3

70 kips 15 kips = 759><10_31n

L1:L2 =121n. L3 =161n.

5=759%10"> in.

A =4, =09n% 43 =0.3in’
Dr. M. Aghayi WhatsApp: +989394054409 2-14




\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample Problem 2.1

SOLUTION:

* Apply a free-body analysis to the bar
BDE to find the forces exerted by

links AB and DC.
» Evaluate the deformation of links AB
The rigid bar BDE 1s supported by two and DC or the displacements of B
links AB and CD. and D.
- Link AB is made of aluminum (£ = 70 * Work QUt the ge(?metry to find ﬂ}G
GPa) and has a cross-sectional area of 500 deflection at E given the detlections

mm?. Link CD is made of steel (£ = 200 at B and D.
5| GPa) and has a cross-sectional area of (600
mm?).

For the 30-kN force shown, determine the
deflection a) of B, b) of D, and c) of E.
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k‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample Problem 2.1

SOLUTION: Displacement of B:
Free body: Bar BDE Fan=00RN 55 = L
. AE
3 kN ]
& ) T A = 500 mm?* — (_ 60 X 103 NXO:S m)
- | B E =170 GPa B -6 2 9
®) E L 50010 m~ \70x10” Pa
!* T ! .4 m -—‘ | 3 =-514x 10_6m
F ;= 60 kN
5 =0.514mm T
ZMB = O . B
Displacement of D:
0=—(30kNx0.6m)+ Frpx0.2m
Fipy = kN 5 _ PL
Fep =+90kN tension . D= uE
2Mp =0 ~ (00x10°N)0.4m)
0=—-(30KNx0.4m)-Fypx02m  oin || f-socen  (600x10°m?|200x10° Pa)
Fyp =—60kN compressim | ‘ —300x10"%m
' D
- Sp =0.300mm

ﬁr Besta.i Dr. M. Aghayi WhatsApp: +989394054409 2-16



VIECHANICS OF MAIERIALS Beer - Johnston -
Sample Problem 2.1

Displacement of D:

ST BB BH
(4 m T L DD" HD
“-T 0.514mm _ (200 mm)-x
R B ol C o 0.300 mm X
x=73.7mm
!_= -— 0.4 m —J
0.2m
EE' HE
8y = 0.514 mm DD'  HD
(__ B dp = 0.300 mm
: i E S _(400+73.7)mm
B - T 0.300mm 73.7 mm
P 8 O =1.928mm
X
{200 mm —x) I*TL
<« 400 mm—'-l 5E =1928meL

TE{H} mlur
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Sample Problem 2.2

The rigid castings A and B are connected by two 3-in.-diameter steel bolts CD
and GH and are in contact with the ends of a 1.5-in.-diameter aluminum rod
EF. Each bolt 1s single-threaded with a pitch of 0.1 in., and after being snugly
fitted, the nuts at D and H are both tightened one-quarter of a turn. Knowing
that E is 29 x 10° psi for steel and 10.6 x 10° psi for aluminum, determine
the normal stress in the rod.

18 in.

C U — s D

A
Y
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Sample Problem 2.2

& D
~a=<fm =i
P '

b E F PJ"?
P." # -_ P'J"
G H
i .
P, P,

Fig.1 Free-body diagrams of bolts and
aluminum bar.

Il Deformations.

a. Bolts CD and GH. Tightening the nuts causes tension in the bolts
(Fig. 1). Because of symmetry, both are subjected to the same internal force
B P, and undergo the same deformation é,. Therefore,

PbLb—_|_ Pb(181n)
AE, 12075 in.)%(29 x 10° psi)

5, = + = +1.405x 10°°P, (1)
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CHANICS OF MATERIALS

Sample Problem 2.2

b. Rod EF. The rod is in compression (Fig. 1), where the magnitude of
the force 1s P, and the deformation §,:

Pl P.(12in.) 5
AE.  12(1.5in)%(10.6 x 10° psi)
c. Displacement of D Relative to B. Tightening the nuts one-quarter

turn causes ends D and H of the bolts to undergo a displacement of ;(0.1 in.)
relative to casting B. Considering end D,

5, =— = —0.6406 x 10°° P,

Spsp = 1(0.1in.) = 0.025 in. 3

But 6p/5 = 6p — 6, Where J and 65 represent the displacements of D and B.
If casting A 1s held in a fixed position while the nuts at D and H are being
tightened, these displacements are equal to the deformations of the bolts and
of the rod, respectively. Therefore,

5DKB = 61’) - 5:’
Substituting from Egs. (1), (2), and (3) into Eq. (4),
0.025 in. = 1.405 x 107° P, + 0.6406 x 107° P,

WhatsApp: +989394054409
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample Problem 2.2

Free Body: Casting B (Fig. 2).
L3 = 0 PPl P=2P (6)

P

F q— )
e Pj'r

Fig. 2 Free-body diagram
of rigid casting.
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VIECHANICS OF MATERIALS oo - oniaicn

Sample Problem 2.2

Forces in Bolts and Rod. Substituting for P, from Eq. (6) into Eq. (5),

we have

0.025in. = 1.405 x 10°°P, + 0.6406 x 107°(2P,)
P, = 9.307 x 10’ Ib = 9.307 kips
P, = 2P, = 2(9.307 kips) = 18.61 kips

Stress in Rod.

P, 18.61 kips .
o, = = 7 ‘ ~ O, = 10.53 kst
Ayx  Fm(l.5in.)°

Dr. M. Aghayi WhatsApp: +989394054409 p
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VIECHANICS OF MATERIALS

Static Indeterminacy

Structures for which internal forces and reactions
150 s cannot be determined from statics alone are said
to be statically indeterminate.

Am
A= o 2 lid
A= _:.:-Ununq___hh__

300 kN 13} mm

Lels)

sl A structure will be statically indeterminate
—)L whenever it 1s held by more supports than are
S mm required to maintain its equilibrium.

A = 400 mm2__[EHE

GO0 kN

« Redundant reactions are replaced with
unknown loads which along with the other
loads must produce compatible deformations.

* Deformations due to actual loads and redundant
reactions are determined separately and then added
or superposed.

§:5L+5R:O

Ll
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VIECHANICS OF MAITERIALS
Example 2.2

A rod of length L, cross-sectional area A;, and modulus of elasticity
E,, has been placed inside a tube of the same length L, but of cross-
sectional area A, and modulus of elasticity E, (Fig. 2.21a). What is the

deformation of the rod and tube when a force P is exerted on a rigid
end plate as shown?

fTUbE (Az, Ez)
Rod (A, E,) e
End
N L ~1 plate

(a)

Dr. M. Aghayi
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Example 2.2

The axial forces in the rod and in the tube are P, and P,, respectively.
Draw free-body diagrams of all three elements (Fig. 2.21b, ¢, d). Only
Fig. 2.21d yields any significant information, as:

P[ o Pz = M (1)
Pl : [ i PFI
(D)

P, -~ P’
— -
© -
e
P
., |
(d) 2
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VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.2

Clearly, one equation is not sufficient to determine the two unknown internal
forces P, and P,. The problem is statically indeterminate.

However, the geometry of the problem shows that the deformations
0, and 6, of the rod and tube must be equal. Recalling Eq. (2.9), write

_ B
 AE,

P,L
AEEZ

&

2

(2)

1

Equating the deformations 6, and 6,

P Py

AE, ~ AE,

(3)

Equations (1) and (3) can be solved simultaneously for P, and P;:

_ AEP o AE,P
" AE, + AE, *~ AE, + A,E,

P

Either of Egs. (2) can be used to determine the common deformation of

_. the rod and tube.
B Bestalir Dr. M. Aghayl WhatSAppZ +989394054409 2-26
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Example 2.3

A bar AB of length L and uniform cross section is attached to rigid supports
at A and B before being loaded. What are the stresses in portions AC and BC
due to the application of a load P at point C (Fig. 2.22a)?

T;—A’—“—_“‘
T

Ll

ol |

i 1
L,

g |

B D

Dr. M. Aghayi WhatsApp: +989394054409 2-27



VIECHANICS OF MAITERIALS
Example 2.3

R,
A 1 i

Cl
P
.

|

B
1Rh‘

Drawing the free-body diagram of the bar (Fig. 2.22b), the equilibrium
equation 1s

RA+RB:P (1)

Dr. M. Aghayi WhatsApp: +989394054409 2-28



VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.3

Since this equation is not sufficient to determine the two unknown reactions
R, and Rjp, the problem is statically indeterminate.

However, the reactions can be determined if observed from the geometry
that the total elongation 6 of the bar must be zero. The elongations of the
portions AC and BC are respectively 8, and 6,, so

5=5]+52=0

Using Eq. (2.9), 6, and 6, can be expressed in terms of the corresponding
internal forces P, and P,,

5_P1L1+Pz£a_0
- AE AE

(2)
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Example 2.3

B

=
tR{; TRH

Note from the free-body diagrams shown in parts b and ¢ of Fig. 2.22¢ that
P, = R, and P, = —Rjp. Carrying these values into Eq. (2),

RAL] = RBLE == U (3)
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Example 2.3

Equations (1) and (3) can be solved simultaneously for R, and Rjp, as
Ry, = PL,/L and Rz = PL,/L. The desired stresses o, in AC and o, in BC

are obtained by dividing P, = R, and P, = —Rj by the cross-sectional area
of the bar:

PL, PL,

AL AL

SAESNY Dr. M. Aghayi WhatsApp: +989394054409 2-3




VIECHANICS OF MATERIALS Beer - Johnston - Dewolr
Example 2.4

Determine the reactions at 4 and B for the steel
== bar and loading shown, assuming a close fit at
i both supports before the loads are applied.

Am
A= 05 2 i
A= _;.:{}nunq____h__

300 kN [
C il

A = 4K ?:":'_:-.";..:

13 mm

SOLUTION:

130 mm

—_)L * Consider the reaction at B as redundant, release
i the bar from that support, and solve for the
displacement at B due to the applied loads.

GO0 kN

» Solve for the displacement at B due to the
redundant reaction at B.

» Require that the displacements due to the loads
and due to the redundant reaction be
compatible, i.e., require that their sum be zero.

» Solve for the reaction at 4 due to applied loads
and the reaction found at B.

g D\ Aghayi WhatsApp: +989394054409 2-32
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Example 2.4

SOLUTION:

» Solve for the displacement at B due to the applied
loads with the redundant constraint released,

Am

150 mm
u B =0 P =P=600x10°N P, =900x10°N
300 kN K 150} mm 6 2 6 2
E’ :;’.:_ i A1=A2 =400x10 "m A3 =A4=250><10_ m
150 mm
E‘.l L1:L2 :L3 :L4:O.150m
H{H,ILT;' 150 mm 5 s PZLZ B 1125)(109
b T AE E
: . 4 » Solve for the displacement at B due to the redundant
constraint,
A00 mm
| J A =P =-Rp
o= =
1 A =400x10°m? 4, =250x10"°m?
iz Bﬂﬂjmm Ll _ LZ —0.300 m
i 9 pL  (L95x103)R,
Ry i AE; E
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VIECHANICS OF MATERIALS Beer - Johnston - Dewolr
Example 2.4

« Require that the displacements due to the loads and due to
the redundant reaction be compatible,

5=5L+§R =0

9 3
_ 1.125x10 _(1.95><10 7, o
E E

o

300 kN

Rp =577x10°N =577 kN

* Find the reaction at 4 due to the loads and the reaction at B
ZFy =0=R,—300KkN—-600kN +577kN

1 600 kN

R, =323kN

R, =323kN
Rp =577kN
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Example 2.5

Determine the reactions at A and B for the steel bar and loading of
Concept Application 2.4, assuming now that a 4.5-mm clearance

exists between the bar and the ground before the loads are applied
(Fig. 2.24). Assume E = 200 GPa.

Apd—— ¥ A
_ 2
A =250 mm 300 mm
l 300 kN
Colll—— ol
A =400 mm’> —
300 mm
l 1 l 600 kN
5 |

L P Dr. M. Aghayi WhatsApp: +989394054409 2-




VIECHANICS OF MATERIALS oo - oniaicn

Example 2.5

Considering the reaction at B to be redundant, compute the defor-
mations 9; and oy caused by the given loads and the redundant reaction
R; However, in this case, the total deformation 1s 6 = 4.5 mm.
Therefore,

§=06, +8r=45x10"m (1)

Substituting for 6; and dy into (Eq. 1), and recalling that E = 200 GPa =
200 X 10’ Pa,

G|

1.125 x 10°  (1.95 x 10*)R
°= 200 x 10 - 200><103‘ T=AS x0T,
=
>

Solving for R,
Rz =1154x 10° N = 115.4 kN
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Example 2.5

The reaction at A is obtained from the free-body diagram of
the bar (Fig. 2.23e):

+1ZF,=0: R,—300kN — 600kN + Rz =0
R, =900 kN — Rz = 900 kN — 115.4 kN = 785 kN
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VIECHANICS OF MATERIALS o e L TR
Thermal Stresses

« A temperature change results in a change in length or
thermal strain. There is no stress associated with the
thermal strain unless the elongation is restrained by
the supports.

 Treat the additional support as redundant and apply
the principle of superposition.

@ il Sy =a(AT)L Op

P
AE

a = thermal expansion coef.

* The thermal deformation and the deformation from

(b) —~% = the redundant support must be compatible.
5=5T+5P=O 5=5T+5P=O
Pr P =—AEa(AT)
a(AT)L+-—=0 P
AE o=" = ~Ea(AT)

2% Bemtair Dr. M. Aghayi WhatsApp: +989394054409 2-38




VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.6

Determine the values of the stress in portions AC and CB of the steel
bar shown (Fig. 2.28a) when the temperature of the bar is —50°F, know-
ing that a close fit exists at both of the rigid supports when the tempera-
ture is +75°F. Use the values E = 29 x 10° psi and @ = 6.5 x 10™°/°F

for steel.
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VIECHANICS OF MAITERIALS
Example 2.6

LA™

(b) —

2 ~—0p
(¢)
' B
>+ 1 2 e
l | Rp
(d)
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VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.6

Determine the reactions at the supports. Since the problem is statically
indeterminate, detach the bar from its support at B and let it undergo the
temperature change

AT = (—50°F) — (75°F) = —125°F
The corresponding deformation (Fig. 2.28¢) is
6y = a(AT)L = (6.5 x 107°/°F)(—125°F)(24 in.)
= —19.50 x 107 in.

Applying the unknown force Rz at end B (Fig. 2.28d), use Eq. (2.10) to
express the corresponding deformation 6. Substituting

L, =L,=12in.
A, =06in" A,=12in’

P,=P,=Rz; E=29x 10°psi
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VIECHANICS OF MATERIALS Beer - Jolusion - Dewar

Example 2.6
into Eq. (2.10), write

_ P\, N P,L,
 AE  AE

B R (12in. . 12in.)
29 % 10°psi \0.6in*> 1.2 in’

= (1.0345 x 10~°in./Ib)Ry

R

Expressing that the total deformation of the bar must be zero as a result of
the imposed constraints, write

5 — {ST + 53 — 0
=—19.50 x 1077 in. + (1.0345 x 10 °in./Ib)Rz = 0
from which

Rz = 18.85 x 10°Ib = 18.85 kips
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VIECHANICS OF MAITERIALS
Example 2.6

The reaction at A is equal and opposite.
Noting that the forces in the two portions of the bar are P, = P, =

18.85 kips, obtain the following values of the stress in portions AC and CB
of the bar:

P, 18.85 kips .
o) = = =9 = +3I42 ksi

A 0.6 in”

P, 18.85 kips .
Oy =—= — — = +15.71 ksi

A, 1.2 in
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VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.6

It cannot be emphasized too strongly that, while the rotal deformation
of the bar must be zero, the deformations of the portions AC and CB are
not zero. A solution of the problem based on the assumption that these
deformations are zero would therefore be wrong. Neither can the values
of the strain in AC or CB be assumed equal to zero. To amplify this point,
determine the strain &, in portion AC of the bar. The strain £, can be
divided into two component parts; one is the thermal strain &7 produced
in the unrestrained bar by the temperature change AT (Fig. 2.28¢). From
Eq. (2.14),

er=a AT = (6.5 x 107°%/°F)(—125°F)
= —812.5 x 107° in./in.

SAESNY Dr. M. Aghayi WhatsApp: +989394054409 2-44




VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.6

The other component of &, 1s associated with the stress o, due to the force

Rz applied to the bar (Fig. 2.28d). From Hooke’s law, express this component
of the strain as

6, +31.42 x 10’ psi

= —— — = +1083.4 X 107° in./in.
E 29 x 10 psi

Add the two components of the strain in AC to obtain
il -6 6
EAC=ET+E=—812.5 X 107 + 1083.4 x 10

= 4271 x 107 in./in.
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Example 2.6

A similar computation yields the strain in portion CB of the bar:
02 -6 -6
ECB=ET+E=—312.5 X 107" + 541.7 X 10

= —271 x 107 in./in.
The deformations 6,4 and 6.5 of the two portions of the bar are
Sac = E4c(AC) = (+271 x 107°)(12 in.)
=4+325 % 10~°in.
Scg = €cg(CB) = (=271 x 10°°)(12 in.)
=-3.25x 10 in.

Thus, while the sum 6 = d,- + 0.5 of the two deformations is zero, neither

of the deformations is zero.
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Sample Problem 2.3

The 3-in.-diameter rod CE and the 3-in.-diameter rod DF are attached to the
rigid bar ABCD as shown. Knowing that the rods are made of aluminum and

using E = 10.6 x 10° psi, determine (a) the force in each rod caused by the
loading shown, and (b) the corresponding deflection of point A.

121n. ﬁin.

B
A Co oD
11[1 kips 24 1n.

E

30 in.
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Sample Problem 2.3

12 in. 8 in.

I
| Cc D
A(’——'.:::lﬂ* B — )
B'l
10 kips F,..
P Frp DI

Fig.1 Free-body diagram of rigid
bar ABCD.

Statics. Considering the free body of bar ABCD in Fig. 1, note that the
reaction at B and the forces exerted by the rods are indeterminate. However,
using statics,

+23XMy = 0: (10 kips)(18in.) — Fp(121in.) — Fpr(20in.) = 0
12FC'E - o 20FDF - 180 (1)

] V] (Al [A] E}
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\‘ m&‘x‘m Beer  Johnston ° DeWolf
Sample Problem 2.3

12 1in. , 81n.

|-:-—18 in.—r-‘
A B

'1‘('//_ c"j[-jc D

A' .f’i__ﬁ_

Fig. 2 Linearly proportional
displacements along rigid bar
ABCD.

Geometry. After application of the 10-kip load, the position of the bar is
A'BC’'D’ (Fig. 2). From the similar triangles BAA’, BCC’, and BDD',

% _ % 5= 0.65 2
12in. 20in. Gr== ek (2)
N Op

18in. 20in. 4= .20 (3)
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TF CE F” v l
9g \.i ____________ _ =5
|

30 in.

Fig. 3 Forces and deformations
in CE and DF.

Deformations. Using Eq. (2.9), and the data shown in Fig. 3, write

_ Feglcg _ Fprlpr
7 ALE P ApE
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Sample Problem 2.3

Substituting for 6, and o, into Eq. (2), write

Feell Fprl
50 = 0.65, CECE _ (y ¢ ~DF=DF

LDF ACE (30 In) [ %(% in-)z ]
Foe=00——F;-:=1006 F Fer = 0.333F
CE ey DF Ain. }13(% in.)? prF I'ce DF

Force in Each Rod. Substituting for F into Eq. (1) and recalling that all
forces have been expressed in kips,
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Deflections. The deflection of point D is

_ FpeLpr  (7.50 x 10’ 1b)(30 in.)
T AprE T 123 in)2(10.6 x 10° psi)

5p = 48.0 X 10~ in.

Using Eq. (3),
5, = 0.95, = 0.9(48.0 x 10~ in.) 5, =432 x 107 in.
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Sample Problem 2.4

The rigid bar CDE 1is attached to a pin support at E and rests on the 30-mm-
diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through a
hole in the bar and is secured by a nut that 1s snugly fitted when the temperature
of the entire assembly i1s 20°C. The temperature of the brass cylinder is then raised
to 50°C, while the steel rod remains at 20°C. Assuming that no stresses were
present before the temperature change, determine the stress in the cylinder.

Rod AC: Steel Cylinder BD: Brass
E = 200 GPa E = 105 GPa
a= 117 % 107°/°C a=20.9 % 107°/°C
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Sample Problem 2.4

‘-E— 0.45 m—"vU.B m*‘
C 5 - E
G L7 \ '

_\-F_‘_-_-_‘_\_\_\_\_\_\_\_'_‘—'——._

0.9 m l B
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Statics. Considering the free body of the entire assembly, write

L 23XM;=0:  Ry(0.75m) — Rg(03m) =0 R, =0.4R; (1)
5 D E
[:- -‘“‘n.

¥

045 m—

- 0-3 m.“:
Fig.1 Free-body diagram of bolt, cylinder, and bar.
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A
J>

0.3
gm0 s =0
o o B35 e ¢

(a)

Fig. 2 Superposition of thermal and restraint force deformations. (a) Support at B removed.
(b) Reaction at B applied. (c) Final position.
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Sample Problem 2.4

Deflection 0;. Because of a temperature rise of 50° — 20° = 30°C,
the length of the brass cylinder increases by o7 (Fig. 2a).

57 = L(AT)a = (0.3 m)(30°C)(20.9 x 1075/°C) = 188.1 x 10°m |

Deflection 6,. From Fig. 2b, note that 6, = 0.46¢ and 6, = ép + g/p.

Se=——=- : =11.84 X 107 R4 1
AE  ;7(0.022 m)~(200 GPa)

8y = 0.406 = 0.4(11.84 x 10°R,) = 4.74 x 10°R,,1

o Rl _ R4(0.3 m)
7P AE T 12(0.03 m)2(105 GPa)

= 4.04 x 107°Rz 1
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Recall from Eq. (1) that R4 = 0.4Rjp, so

8, = 8p + 8gp = [4.74(0.4R;) + 4.04R5]10™° = 5.94 x 10°Ry 1

But &; = &;: 188.1 X 107°m = 5.94 x 107°R, Ry = 31.7kN

R 1.7 kN
Stress in Cylinder. Oog = B_ 3 oy = 44.8 MPa

A 172(0.03 m)?
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gxzf O'y

=0, =0

* The elongation in the x-direction 1s
accompanied by a contraction in the other
directions. Assuming that the material 1s
1sotropic (no directional dependence),

g,=¢6,#0

e Poisson’s ratio 1s defined as

lateral strain y &,

Ey &

axial strain
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Example 2.7

A 500-mm-long, 16-mm-diameter rod made of a homogenous, isotropic mate-
rial is observed to increase in length by 300 ym, and to decrease in diameter

by 2.4 ym when subjected to an axial 12-kN load. Determine the modulus of
elasticity and Poisson’s ratio of the material.
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The cross-sectional area of the rod i1s
A=m’=n8x 107 m)’> =201 x 10°° m?

Choosing the x axis along the axis of the rod (Fig. 2.31), write

P 12 x 10° N
O:i=—= = 5 = 9.7 MPa
A 201 x 107 m?
o, 300 ym
=T B0 1D
L 500 mm
0, —2.4um
pom Lm o Ehse 10
' d 16 mm
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From Hooke’s law, o, = E¢,,

o, 59.7MPa
b= — = = 99.5 GPa
€ 600 x 10
and from Eq. (2.18),
&,  —150%107°

— =0.25
£, 600 x 107°
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Generalized Hooke’s Law

 For an element subjected to multi-axial loading,
the normal strain components resulting from the
stress components may be determined from the
principle of superposition. This requires:

1) strain 1s linearly related to stress
2) deformations are small

* With these restrictions:
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Example 2.8

The steel block shown (Fig. 2.34) 1s subjected to a uniform pressure on
all its faces. Knowing that the change in length of edge AB is —1.2 x 107 in.,
determine (a) the change in length of the other two edges and (b) the

pressure p applied to the faces of the block. Assume E = 29 x 10° psi and
v = 0.29.

Dr. M. Aghayi WhatsApp: +989394054409 2-64



VIECHANICS OF MAITERIALS Beer - Johnston - Dewolr
Example 2.8

a. Change in Length of Other Edges. Substituting 6, =0, = 0, = —p
into Egs. (2.20), the three strain components have the common value

f_rzg},:gzz—%(l _2) (1)
Since
e.=06,/AB = (—-12x 10~ in.)/(4 in.)
= —300 x 107 in./in.
obtain

e, =¢e.= e, =—300 x 107° in./in.

S
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Example 2.8

from which
8, = &,(BC) = (=300 x 107°)(2 in.) = =600 x 107° in.
5, = £.(BD) = (=300 x 107°)(3in.) = —900 x 107 in.

b. Pressure. Solving Eq. (1) for p,

Ee, (29 x 10° psi) (=300 x 107°)
=T ioo, 1 —0.58
= 20.7 ksi
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VIECHANICS OF MATERIALS
Dilatation: Bulk Modulus

Y « Relative to the unstressed state, the change in volume is
e= 1—[(1+5x)(1+5yX1+gZ)J= 1—[1+gx +é&, "‘ng

=&y tE,t+E;

12y

(Gx+0y+02)

= dilatation (change in volume per unit volum ¢)

« For element subjected to uniform hydrostatic pressure,

3(1-2
="

= bulk modulus

» Subjected to uniform pressure, dilatation must be

negative, therefore

O<v<i

2
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Example 2.9

Determine the change in volume AV of the steel block shown in Fig. 2.34,

when it is subjected to the hydrostatic pressure p = 180 MPa. Use E = 200 GPa
and v = 0.29.
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From Eq. (2.24), the bulk modulus of steel is
E 200 GPa

k = = =158.7 GPa
3(1 —2v) 3(1 —0.38)
and from Eq. (2.25), the dilatation is
o=k UMYE i i
k 158.7 GPa

Since the volume V of the block in its unstressed state 1s
V = (80 mm) (40 mm)(60 mm) = 192 x 10’ mm’
and e represents the change in volume per unit volume, e = AV/V,
AV =eV = (-1.134 x 1077)(192 x 10° mm’)
AV = -218 mm’
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Shearing Strain

it

A cubic element subjected to a shear stress will
deform into a rhomboid. The corresponding shear
strain is quantified in terms of the change in angle
between the sides,

e \ Ty = fryy)

* A plot of shear stress vs. shear strain is similar the
y previous plots of normal stress vs. normal strain
' except that the strength values are approximately
half. For small strains,

Txy :nyy Tyz = nyz T =GV

where G is the modulus of rigidity or shear modulus.

Fig. 2.47
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Example 2.10

2.5 in_ AT —__ 8 in. SOLUTION:

* Determine the average angular

deformation or shearing strain of
the block.

» Apply Hooke’s law for shearing stress

and strain to find the corresponding
shearing stress.

A rectangular block of material with
modulus of rigidity G = 90 ksi is « Use the definition of shearing stress to
bonded to two rigid horizontal plates. find the force P.

The lower plate 1s fixed, while the
upper plate is subjected to a horizontal
force P. Knowing that the upper plate
moves through 0.04 in. under the action
of the force, determine a) the average
shearing strain in the material, and b)
the force P exerted on the plate.
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Example 2.10

if . . .
0.04 in. * Determine the average angular deformation

or shearing strain of the block.
0.041n.

21n.

Vxy Rlanyy, = ¥ xy =0.020rad

* Apply Hooke’s law for shearing stress and
strain to find the corresponding shearing
stress.

Ty = Gy = (90x107psi [0.020 rad) = 1800 psi

-
-

X

 Use the definition of shearing stress to find
the force P.

P =r,,4=(1800psi)8in.)2.5in.) =36x10°b

P =36.0kips
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Relation Among E, v, and G

| 1 * An axially loaded slender bar will
| elongate in the axial direction and
contract in the transverse directions.

| e

P’

I
H

 An initially cubic element oriented as in
top figure will deform into a rectangular
parallelepiped. The axial load produces a
normal strain.

» If the cubic element is oriented as in the
bottom figure, 1t will deform into a
rhombus. Axial load also results in a shear
strain.

» Components of normal and shear strain are
related,

E
(1
e (1+v)
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Example 2.11

A 60-mm cube is made from layers of graphite epoxy with fibers aligned in
the x direction. The cube is subjected to a compressive load of 140 kN in the
x direction. The properties of the composite material are E, = 155.0 GPa,
E, = 12.10 GPa, E, = 12.10 GPa, v,, = 0.248, v,. = 0.248, and v,, = 0.458.
Determine the changes in the cube dimensions, knowmg that (a) the cube is
free to expand 1n the y and z directions (Fig. 2.45a); and (b) the cube is free
to expand in the z direction, but is restrained from expanding in the y direction
by two fixed frictionless plates (Fig. 2.45b).
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140 kN

.l

Dr. M. Aghayi

60 mm 140 kN

Fixed
frictionless

v il
£
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Example 2.11

a. Free in y and z Directions. Determine the stress o, in the direction
of loading.
P —140 x 10° N

= = —38.89 MPa
A (0.060 m)(0.060 m)

Oy =

Since the cube is not loaded or restrained in the y and z directions, we have
o, = o, = (. Thus, the right-hand members of Egs. (2.37) reduce to their first
terms. Substituting the given data into these equations,

_o_“BEOMPa_
“TE T 1550GPa
V0 (0.248)(—38.89 MP
oo % (D2A0), 2) _ 16222 x 10~
E, 155.0 GPa
Vo, (0.248)(—38.69 MP
£, =——— = —( A 2) = +62.22 x 107°

E, 155.0 GPa
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The changes in the cube dimensions are obtained by multiplying the corre-
sponding strains by the length L = 0.060 m of the side of the cube:

5, =¢eL = (—250.9 x 107°)(0.060 m) = —15.05 um
5, = &,L = (+62.2 x 107°)(0.060 m) = +3.73 ym
5, =¢eL = (4+62.2 x 107°)(0.060 m) = +3.73 um
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b. Free in z Direction, Restrained in y Direction. The stress in the
x direction is the same as in part a, namely, o, = 38.89 MPa. Since the
cube 1s free to expand in the z direction as in part a, 6. = 0. But since
the cube is now restrained in the y direction, the stress o, is not zero. On
the other hand, since the cube cannot expand in the y direction, 6, = 0.
Thus, e, = 6,/L = 0. Set 6, = 0 and &, = 0 in the second of Egs. (2.37)
and solve that equation for oy:

= (E = (@) (0.248)(—38.89 MPa)
o, = E. U0y = 155.0 . ( : a

= —7352.9 kPa
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Now that the three components of stress have been determined, use the first
and last of Eqgs. (2.37) to compute the strain components ¢, and ¢.. But the
first of these equations contains Poisson’s ratio v,,, and as you saw earlier this

ratio is not equal to the ratio v,, that was among the given data. To find v,,,
use the first of Egs. (2.38) and write

= (E (12 10 0.248) = 0.01936
= E, o=\ 155.0 :
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Now set . = 0 in the first and third of Eqgs. (2.37) and substitute the giver
values of E,, E,, v,,, and v,,, as well as the values obtained for o,, 0,, and v,,

resulting in

“TE~ E _ 1550GPa 12.10 GPa
= —-249.7 X 107°
VO WS (0.248)(-38.89 MPa) _ (0.458)(~752.9 kPa)
- B B 155.0 GPa 12.10 GPa
= +90.72 x 107
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The changes in the cube dimensions are obtained by multiplying the corre-
sponding strains by the length L = 0.060 m of the side of the cube:

5, =¢eL = (—249.7 x 107°)(0.060 m) = —14.98 ym
5, = e,L. = (0)(0.060 m) =0
5, = e.L = (+90.72 x 107°)(0.060 m) = +5.44 ym

Comparing the results of parts @ and b, note that the difference between
the values for the deformation 9, in the direction of the fibers is negligi-
ble. However, the difference between the values for the lateral deforma-
tion 6. is not negligible when the cube is restrained from deforming in
the y direction.
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Sample Problem 2.5

A circle of diameter d =9 in. 1s scribed on an
unstressed aluminum plate of thickness ¢ = 3/4
in. Forces acting in the plane of the plate later

cause normal stresses 6, = 12 ksi and ¢, = 20
ksi.

For E = 10x10° psi and v = 1/3, determine the
change in:

a) the length of diameter 4B,

b) the length of diameter CD,

c) the thickness of the plate, and
d) the volume of the plate.
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SOLUTION: * Evaluate the deformation components.

* Apply the generalized Hooke’s Law to

5p/ 4 =¢&,d =|+0.533x10>in./in. [9in.
find the three components of normal B4~ ®x ( X )

strain. Sp/4 =+4.8x107in.
VO
=+ E 1T Sc/p = &2d = [+1.600x10%in./in. J9in.)

1

~ Sc/p =+14.4x107in.
10x10%psi

{(12 ksi)—O—%(zoksi)}
6 =&yt = (—1.067 x 107> in./in. Xo.75 in. )
= +0.533x10 2 in./in.

S, =—0.800x10"in.

vo, Oy Vvo,

£, =— +
E E E
1067 x10 3 /in.  Find the change in volume
e=é&,+&,+¢, =1.067x107 in’/in’
c :_Vo-x _VO-)’ +O-Z
° E E E AV =eV =1.067x107>(15x15x0.75)in°

= +1.600x 10 3in./in. AV =+0.187in°
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Composite Materials

-  Fiber-reinforced composite materials are formed
from lamina of fibers of graphite, glass, or
polymers embedded in a resin matrix.

Layer )

material .

r « Normal stresses and strains are related by Hooke’s
Law but with directionally dependent moduli of

elasticity,

» Transverse contractions are related by directionally
dependent values of Poisson’s ratio, e.g.,

&
_ Y &
ny == Vyxzy=——"
Ex Ex

« Materials with directionally dependent mechanical
properties are anisotropic.
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Saint-Venant’s Principle

N B ‘ « Loads transmitted through rigid
LT T j J A plates result in uniform distribution
t EmEmana: ‘*”'_ of stress and strain.

i Corrr
HEHH HEE H _ » Concentrated loads result in large
B sEsescas stresses in the vicinity of the load
e + application point.
'

 Stress and strain distributions
become uniform at a relatively short
distance from the load application
points.

e Saint-Venant’s Principle:
Stress distribution may be assumed
independent of the mode of load
application except in the immediate
vicinity of load application points.

‘-Tu.in = (), |I;'=H':'r.|-. ]

7, = 08T, i, = D665,

wm o CeY MM ave Fmm T Hvae

e I e = - = OETE
i, — 1“1"7:|.'.'c Tjian — ]"jh'{r.:--.v Ty S T g
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Stress Concentration: Hole

I : 3.4 -
_EL'“r Y 3.2
P % P 3.0
v, —
= Apr—ir) D TrE——
28 e
-;-d:; t l 26 S
|
| 5.4 ==
K22
- 2.0
e |
P 1.8
i 1.4 |—
—l 1.2
N 1.0

i} (1 0.2
(a) Flat bars with holes

Discontinuities of cross section may result in
high localized or concentrated stresses.
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Stress Concentration: Fillet

3.4
3.2 \
I MALVAY
- B LA AN
. 2.8
l L DN
= 1.3
( . \ \<’ 1.2
~ AN 957
2.0 \ ’Z:.H‘:LH
o 1.5 \\ EH\L*—___J:““‘*
g ] —— b — ] —~———
1.4 —
12
0

1 '
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 (.30
riel

(b) Flat bars with fillets
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Example 2.12

SOLUTION:

« Determine the geometric ratios and

find the stress concentration factor
from Fig. 2.640b.

Determine the largest axial load P
that can be safely supported by a
flat steel bar consisting of two
portions, both 10 mm thick, and
respectively 40 and 60 mm wide,

connected by fillets of radius » =8 » Apply the definition of normal stress to
mm. Assume an allowable normal find the allowable load.

stress of 165 MPa.

* Find the allowable average normal
stress using the material allowable
normal stress and the stress
concentration factor.
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>4 I ) |
3.2 l\ \\ \ D M'—"'
o \ Did = 2
\\ \P\\\ P —
2.6 \ h ] \{ 'a :
2.4 7 1.2
K 22 \l =
2.0 d ‘"::;Himﬁ_ |
L& — B ,;:__:-L:J_:_
L4 I —
1.2 t
1.0 - |
0 002 004 006 008 010 012 004 006 008 020 0.22 0.24 0.26 025 (.30

rid
(b) Flat bars with fillets

Dr. M. Aghayi
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« Determine the geometric ratios and

find the stress concentration factor

from Fig. 2.64b.
D_60mm _, 5,

;_40mm
K =1.82

lzgﬂ:o_zo
d 40mm

 Find the allowable average normal
stress using the material allowable
normal stress and the stress
concentration factor.

O ave = C’l}?x = 1615 lg/;Pa =90.7MPa

» Apply the definition of normal stress
to find the allowable load.

P=Ac,,, = (40mm)10mm)90.7 MPa)

—363x10°N

P=363kN
2-89
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Elastoplastic Materials

U"l
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] H | }
r
'}.l'
oyl ——=—=- * Rupture

Previous analyses based on assumption of
linear stress-strain relationship, 1.¢.,
stresses below the yield stress

Assumption is good for brittle material
which rupture without yielding

If the yield stress of ductile materials is
exceeded, then plastic deformations occur

Analysis of plastic deformations 1s
simplified by assuming an idealized
elastoplastic material

Deformations of an elastoplastic material
are divided into elastic and plastic ranges

Permanent deformations result from
loading beyond the yield stress
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Plastic Deformations

Ui1'|i.|..".

]

A4 * Elastic deformation while maximum
ae K stress is less than yield stress

.
§

(a)
e Maximum stress is equal to the yield
stress at the maximum elastic

loading

dh i
-
|
Q
=3

E"‘I
I
3

-

(h)

» At loadings above the maximum
elastic load, a region of plastic
deformations develop near the hole

 As the loading increases, the plastic
’___P' fy =oy4  region expands until the section is at
=K P,  auniform stress equal to the yield

(d) stress

U U
.

5
o2

|

g D\ Aghayi WhatsApp: +989394054409 2-91



VIECHANICS OF MATERIALS SR
Residual Stresses

* When a single structural element is loaded uniformly
beyond its yield stress and then unloaded, it is permanently
deformed but all stresses disappear. This is not the general
result.

e Residual stresses will remain in a structure after
loading and unloading if

- only part of the structure undergoes plastic
deformation

- different parts of the structure undergo different
plastic deformations

» Residual stresses also result from the uneven heating or
cooling of structures or structural elements

] V] (Al [A] E}
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Example 2.13

A rod of length L = 500 mm and cross-sectional area A = 60 mm” is made
of an elastoplastic material having a modulus of elasticity £ = 200 GPa in its
elastic range and a yield point 6y = 300 MPa. The rod is subjected to an axial
load until it is stretched 7 mm and the load is then removed. What 1s the
resulting permanent set?
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Example 2.13

Referring to the diagram of Fig. 2.53, the maximum strain represented
by the abscissa of point C is

6c 7 mm

L~ 500 mm
However, the yield strain, represented by the abscissa of point Y, is
oy 300 x 10°Pa
E 200 x 10’ Pa

The strain after unloading is represented by the abscissa & of point D. Note
from Fig. 2.53 that

ED:AD: YC:E:C'— Ey
=14x10°-15%x10°=125x%x 10"

The permanent set is the deformation é;, corresponding to the strain &p,.
5p = epL = (12.5 x 107°)(500 mm) = 6.25 mm

Ec =

=14 x 10~

Ey =

=15x%x 10"
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Example 2.14, 2.15, 2.16

A cylindrical rod 1s placed inside a tube : Tube
of the same length. The ends of the rod
and tube are attached to a rigid support
on one side and a rigid plate on the
other. The load on the rod-tube
assembly 1s increased from zero to 5.7

kips and decreased back to zero. L—— 30 in. ‘—l

a) draw a load-deflection diagram

_ . 2 _ . 2
for the rod-tube assembly 4, =0.075m. 4; =0.100m.
: : _ 6 _ 6 .
b) determine the maximum E, =30x10"psi £, =15x107psi
clongation oy, =306ksi oy s = 45ksi

c) determine the permanent set

d) calculate the residual stresses in
the rod and tube.

S D M. Aghayi WhatsApp: +989394054409 2-



VIECHANICS OF MATERIALS Beor + Jonston « Dewolr
Example 2.14, 2.15, 2.16

P, (kips) Y, a) draw a load-deflection diagram for the rod-
ol I | tube assembly
} Py, = oy .4, = (36ksi)[0.075in% )= 2.7 kips
0 6 8 (10~ in.) 3
i o L. 3.
o Y Oy, =éy L= Y”’L:36X106p5130m.=36><103m.
e - : ’ ’ Ey,  30x10°psi
7| E— i
| | Py, = oy 14 = (45ksi)0.100in? )= 4 5kips
0 36 90 &, (10~ in.) 3 .
o)
P, (kips) ; Syi=6y,L=—L1= 45X106ps.1301n. =90x107in,
) — f Ey ; 15x10° psi
Y, i
i | P=F+h
0 3:@ s;ﬂ 8 (107 in.)

Dr. M. Aghayi WhatsApp: +989394054409 2-96
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Example 2.14, 2.15, 2.16

 ataload of P =5.7 kips, the rod has reached the

F_(kips)|

Tr . . . . . .
N~ plastic range while the tube is still in the elastic range
il P. =By . =2.7kips
LT o 60 5. (10 in) _ .
S } P =P-P.=(57-2.7)kips = 3.0kips
| || ST RE O C: O-t :£:3.Oklr)2$ :30kSi
; 4 0.1in
| 3 .
| 30x10 : _3.
: o amm G =eL="tL="""P230in |5 =5 =60x10"in.
Ly 15%x10" psi
P (kips) ¥,
T W * the rod-tube assembly unloads along a line parallel
45 [mmmmn- = ;‘j | to OY,,
/o P m= 4'51{128 =125kips/in. = slope
P 36x107in.
! i!.a |:F & (10 in.) 5’ = — PmaX = — 5.7.1(1ps. - _45.6X10_3in.
RO m 125kips/in.
n.n.,, = A 1[]"’_:':. , —3. 3.
p = Oppax +0' =(60-45.6)x10""in. 5, =14.4x10"in.
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'Example 2.14, 2.15, 2.16

F. (kips) Y, o
2 o « calculate the residual stresses in the rod and tube.
o calculate the reverse stresses in the rod and tube
o s 000m caused by unloading and add them to the maximum
P, i) . stresses.
L p 5 —45.6x10 3in. P
i g=—= _ =-1.52x10"" in./in.
! L 30m.
E :
0 | ﬁ:[l 8, (10%in,]
P (kips) Y, o, =¢FE, = (—1.52><10_3X30><106psi)= —45.6ksi
v | I (.:_'I' o, =¢E, = (—1.52><10_3X15><106psi)= —22.8ksi
. ¥ ;‘r: i
T &
7 P O residual.y = Or + 0 = (36— 45.6)ksi = —9.6 ksi
/ |
- O residualy = 01 + 0} = (30 —22.8)ksi = 7.2ksi
/E F
Hl ._|_. | a (1) ::'iu..l
Ia | E |
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Sample Problem 2.6

The rigid beam ABC is suspended from two steel rods as shown and is
initially horizontal. The midpoint B of the beam is deflected 10 mm
downward by the slow application of the force Q, after which the force
is slowly removed. Knowing that the steel used for the rods is elasto-
plastic with E = 200 GPa and oy = 300 MPa, determine (a) the required
maximum value of Q and the corresponding position of the beam and
(b) the final position of the beam.

Areas:
AD = 400 mm? E| 9J
CE = 500 mm?

—{-—F—WQD 5m
2m
v s

e e
(=
i—B
.
|
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Sample Problem 2.6

IP_-UJ I Pey
B

ALD S il
2m 2m

Fig.1 Free-body
diagram of rigid beam.

Statics. Since Q is applied at the midpoint of the beam (Fig. 1),

L
@ Pyp = Pcg and O =2Psp
>
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Sample Problem 2.6

Psp (kN) Pcg (kN)

120

I

|

|

I

1
0 3 11 14 mm 0 6 mm
Rod AD Rod CE

Fig. 2 Load-deflection diagrams for
steel rods.

jay Elastic Action (Fig. 2). The maximum value of Q and the maximum
elastic deflection of point A occur when ¢ = oy 1n rod AD.
(Pap)max = 0yA = (300 MPa) (400 mm>) = 120 kN
Qmax — Q(PAD)max — 2(120 RN) Qm:lx = 240 kN
00 MP
5A=EL=3L=(3 a)(2m)=3mm
] E 200 GPa
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Sample Problem 2.6

Since Pz = P,yp = 120 kN, the stress in rod CE is

P 120 kN
Oop = — = ~ = 240 MPa
A 500 mm

The corresponding deflection of point C is

OcE . (240 MPa

S e
G = &= 200 GPa

)(5 m) = 6 mm
The corresponding deflection of point B is

g, = 5(84, + 8¢,) = 3(3 mm + 6 mm) = 4.5 mm

Since 6z = 10 mm, plastic deformation will occur.
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Sample Problem 2.6

3 mm Y 14.5 mmlﬁ o

Q =240 kN
Deflections for 3 = 10 mm -=f

Fig. 3 Deflection of fully loaded
beam.

Plastic Deformation. For Q = 240 kN, plastic deformation occurs in rod
AD, where o,p = oy = 300 MPa. Since the stress in rod CE is within the
elastic range, o, remains equal to 6 mm. From Fig. 3, the deflection 6, for
which 6z = 10 mm is obtained by writing

og, = 10 mm = %,(5,,11 + 6 mm) 04, = 14 mm

DS D ML Achayi WhatsApp: +989394054409 2-103
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Sample Problem 2.6

Final deflections <
Fig. 4 Beam'’s final deflections
with load removed.
Unloading. As force Q is slowly removed, the force P,, decreases along
line HJ parallel to the initial portion of the load-deflection diagram of rod AD.
The final deflection of point A is

04, = 14 mm — 3 mm = 11 mm

Since the stress in rod CE remained within the elastic range, note that the
final deflection of point C is zero. Fig. 4 illustrates the final position of the

beam.
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