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Concept of Stress

• The main objective of the study of mechanics 

of materials is to provide the future engineer 

with the means of analyzing and designing 

various machines and load bearing structures.

• Both the analysis and design of a given 

structure involve the determination of stresses 

and deformations.  This chapter is devoted to 

the concept of stress.

1-3



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Review of Statics

• The structure is designed to 

support a 30 kN load

• Perform a static analysis to 

determine the internal force in 

each structural member and the 

reaction forces at the supports

• The structure consists of a 

boom and rod joined by pins 

(zero moment connections) at 

the junctions and supports
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Structure Free-Body Diagram

• Structure is detached from supports and 

the loads and reaction forces are indicated

• Ay and Cy can not be determined from 

these equations

( ) ( )( )

kN30

0kN300

kN40

0

kN40

m8.0kN30m6.00

=+

=−+==

−=−=

+==

=

−==







yy

yyy

xx

xxx

x

xC

CA

CAF

AC

CAF

A

AM

• Conditions for static equilibrium:
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Component Free-Body Diagram

• In addition to the complete structure, each 

component must satisfy the conditions for 

static equilibrium

• Results:

==→= kN30kN40kN40 yx CCA

Reaction forces are directed along boom 

and rod
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• Consider a free-body diagram for the boom:

kN30=yC

substitute into the structure equilibrium 

equation

1-6



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Method of Joints

• The boom and rod are 2-force members, i.e., 

the members are subjected to only two forces 

which are applied at member ends
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• Joints must satisfy the conditions for static 

equilibrium which may be expressed in the 

form of a force triangle:

• For equilibrium, the forces must be parallel to 

to an axis between the force application points, 

equal in magnitude, and in opposite directions
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Stress Analysis

• Conclusion: the strength of member BC is 
adequate

MPa 165all =

• From the material properties for steel, the 
allowable stress is

Can the structure safely support the 30 kN 

load?
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26-
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• At any section through member BC, the 

internal force is 50 kN with a force intensity 

or stress of

dBC = 20 mm

• From a statics analysis

 FAB = 40 kN (compression)   

 FBC = 50 kN (tension)
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Design

• Design of new structures requires selection of  

appropriate materials and component dimensions 

to meet performance requirements

• For reasons based on cost, weight, availability, 

etc., the choice is made to construct the rod from 

aluminum (all= 100 MPa)  What is an 

appropriate choice for the rod diameter?
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• An aluminum rod 26 mm or more in diameter is 

adequate
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Axial Loading: Normal Stress

• The normal stress at a particular point may not be 

equal to the average stress but the resultant of the 

stress distribution must satisfy

 ===

A
ave dAdFAP 

• The resultant of the internal forces for an axially 

loaded member is normal to a section cut 

perpendicular to the member axis.

A

P
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F
ave

A
=




=

→
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0
lim

• The force intensity on that section is defined as 

the normal stress.

• The detailed distribution of stress is statically 

indeterminate, i.e., can not be found from statics 

alone.
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Centric & Eccentric Loading

• If a two-force member is eccentrically loaded, 

then the resultant of the stress distribution in a 

section must yield an axial force and a 

moment.

• The stress distributions in eccentrically loaded 

members cannot be uniform or symmetric.

• A uniform distribution of stress in a section 

infers that the line of action for the resultant of 

the internal forces passes through the centroid 

of the section.  

• A uniform distribution of stress is only 

possible if the concentrated loads on the end 

sections of two-force members are applied at 

the section centroids.  This is referred to as 

centric loading.
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Shearing Stress

• Forces P and P’ are applied transversely to the 

member AB.

A

P
=ave

• The corresponding average shear stress is,

• The resultant of the internal shear force 

distribution is defined as the shear of the section 

and is equal to the load P.

• Corresponding internal forces act in the plane 

of section C and are called shearing forces.

• Shear stress distribution varies from zero at the 

member surfaces to maximum values that may be 

much larger than the average value.  

• The shear stress distribution cannot be assumed to 

be uniform.

1-12



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Shearing Stress Examples

A
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Single Shear
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Double Shear
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Bearing Stress in Connections

• Bolts, rivets, and pins create 

stresses on the points of contact 

or bearing surfaces of the 

members they connect.

dt

P

A

P
==b

• Corresponding average force 

intensity is called the bearing 

stress,

• The resultant of the force 

distribution on the surface is 

equal and opposite to the force 

exerted on the pin.
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Stress Analysis & Design Example

• Would like to determine the 

stresses in the members and 

connections of the structure 

shown.

• Must consider maximum 

normal stresses in AB and 

BC, and the shearing stress 

and bearing stress at each 

pinned connection

• From a statics analysis:

  FAB = 40 kN (compression)   

  FBC = 50 kN (tension)
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Rod & Boom Normal Stresses

• The rod is in tension with an axial force of 50 kN.

• The boom is in compression with an axial force of 40 

kN and average normal stress of –26.7 MPa.

• The minimum area sections at the boom ends are 

unstressed since the boom is in compression.
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• At the flattened rod ends, the smallest cross-sectional 

area occurs at the pin centerline, 

• At the rod center, the average normal stress in the 

circular cross-section (A = 314x10-6m2) is BC = +159 

MPa.
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Pin Shearing Stresses

• The cross-sectional area for pins at A, B, 

and C,
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• The force on the pin at C is equal to the 

force exerted by the rod BC,

• The pin at A is in double shear with a 

total force equal to the force exerted by 

the boom AB,
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Pin Shearing Stresses

• Divide the pin at B into sections to determine 

the section with the largest shear force,

(largest)  kN25

kN15
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• Evaluate the corresponding average 

shearing stress,
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Pin Bearing Stresses

• To determine the bearing stress at A in the boom AB, 

we have t = 30 mm and d = 25 mm,
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kN40
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P
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• To determine the bearing stress at A in the bracket, 

we have t = 2(25 mm) = 50 mm and d = 25 mm,
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Sample problem 1.1
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Sample problem 1.1
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Sample problem 1.1
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Sample problem 1.1
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Sample problem 1.1
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Sample problem 1.1
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Sample problem 1.2
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Sample problem 1.2
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Sample problem 1.2
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Sample problem 1.2
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Sample problem 1.2
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Stress in Two Force Members

• Will show that either axial or 

transverse forces may produce both 

normal and shear stresses with respect 

to a plane other than one cut 

perpendicular to the member axis.

• Axial forces on a two force 

member result in only normal 

stresses on a plane cut 

perpendicular to the member axis.

• Transverse forces on bolts and 

pins result in only shear stresses 

on the plane perpendicular to bolt 

or pin axis.
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Stress on an Oblique Plane

• Pass a section through the member forming 

an angle  with the normal plane.
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• The average normal and shear stresses on 

the oblique plane are

 sincos PVPF ==

• Resolve P into components normal and 

tangential to the oblique section,

• From equilibrium conditions, the 

distributed forces (stresses) on the plane 

must be equivalent to the force P.
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Maximum Stresses

• The maximum normal stress occurs when the 

reference plane is perpendicular to the member 

axis,

0
0

m == 
A

P

• The maximum shear stress occurs for a plane at 

+ 45o with respect to the axis,
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• Normal and shearing stresses on an oblique 

plane
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Stress Under General Loadings

• A member subjected to a general 

combination of loads is cut into 

two segments by a plane passing 

through Q 

• For equilibrium, an equal and 

opposite internal force and stress 

distribution must be exerted on 

the other segment of the member.
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• The distribution of internal stress 

components may be defined as,

1-36



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

State of Stress

• Stress components are defined for the planes 

cut parallel to the x, y and z axes.  For 

equilibrium, equal and opposite stresses are 

exerted on the hidden planes.

• It follows that only 6 components of stress are 

required to define the complete state of stress

• The combination of forces generated by the 

stresses must satisfy the conditions for 

equilibrium:
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0
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similarly, andxz zx yz zy   = =

• Consider the moments about the z axis:
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Factor of Safety

stress allowable

stress ultimate

safety ofFactor 

all

u ==

=




FS

FS

Structural members or machines 

must be designed such that the 

working stresses are less than the 

ultimate strength of the material.

Factor of safety considerations:

• uncertainty in material properties 

• uncertainty of loadings

• uncertainty of analyses

• number of loading cycles

• types of failure

• maintenance requirements and 

deterioration effects

• importance of member to structures 

integrity

• risk to life and property

• influence on machine function
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Sample problem 1.3
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Sample problem 1.3
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Sample problem 1.3

1-41



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Sample problem 1.3
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Sample problem 1.3
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Sample problem 1.4
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Sample problem 1.4
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Sample problem 1.4
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Sample problem 1.4
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Sample problem 1.4
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Stress & Strain: Axial Loading

2 - 4

• Suitability of a structure or machine may depend on the deformations in 

the structure as well as the stresses induced under loading.  Statics 

analyses alone are not sufficient.

• Considering structures as deformable allows determination of member 
forces and reactions which are statically indeterminate.

• Determination of the stress distribution within a member also requires 

consideration of deformations in the member.

• Chapter 2 is concerned with deformation of a structural member under 
axial loading.  Later chapters will deal with torsional and pure bending 
loads.
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Normal Strain

2 - 5
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Stress-Strain Test
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Stress-Strain Diagram:  Ductile Materials
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Stress-Strain Diagram:  Brittle Materials  
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Hooke’s Law: Modulus of Elasticity

2 - 9

• Below the yield stress

Elasticity of Modulus         

or Modulus Youngs=

=

E

E

• Strength is affected by alloying, 

heat treating, and manufacturing 

process but stiffness (Modulus of 

Elasticity) is not.
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Elastic vs. Plastic Behavior

2 - 10

• If the strain disappears when the 

stress is removed, the material is 

said to behave elastically.  

• When the strain does not return 

to zero after the stress is 

removed, the material is said to 

behave plastically.

• The largest stress for which this 

occurs is called the elastic limit.
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Fatigue

2 - 11

• Fatigue properties are shown on 

S-N diagrams.

• When the stress is reduced below 

the endurance limit, fatigue 

failures do not occur for any 

number of cycles.

• A member may fail due to fatigue 

at stress levels significantly below 

the ultimate strength if subjected 

to many loading cycles.
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Deformations Under Axial Loading

2 - 12

AE

P

E
E ===




• From Hooke’s Law:

• From the definition of strain:

L


 =

• Equating and solving for the deformation,

AE

PL
=

• With variations in loading, cross-section or 

material properties,

=
i ii

ii
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Example 2.1

2 - 13

Determine the deformation of 

the steel rod shown under the 

given loads.

629 10 psi

1.07 in.   0.618 in.

E

D d

= 

= =

SOLUTION:

• Divide the rod into components at 

the load application points.

• Apply a free-body analysis on each 

component to determine the 

internal force

• Evaluate the total of the component 

deflections.



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Example 2.1

2 - 14

SOLUTION:

• Divide the rod into three 

components:

2
21

21

in 9.0

in. 12

==

==

AA

LL

2
3

3

in 3.0

in. 16

=

=

A

L

• Apply free-body analysis to each 

component to determine internal forces,

lb1030

lb1015

lb1060

3
3

3
2

3
1

=

−=

=

P

P

P

• Evaluate total deflection,

( ) ( ) ( )

in.109.75

3.0

161030

9.0

121015

9.0

121060

1029

1

1

3

333

6

3

33

2

22

1

11

−=











 
+

−
+




=









++==

A

LP

A

LP

A

LP

EEA

LP

i ii

ii

 in. 109.75 3−=
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Sample Problem 2.1

2 - 15

The rigid bar BDE is supported by two 

links AB and CD.  

Link AB is made of aluminum (E = 70 

GPa) and has a cross-sectional area of 500 

mm2.  Link CD is made of steel (E = 200 

GPa) and has a cross-sectional area of (600 

mm2).  

For the 30-kN force shown, determine the 

deflection a) of B, b) of D, and c) of E.

SOLUTION:

• Apply a free-body analysis to the bar 

BDE to find the forces exerted by 

links AB and DC.

• Evaluate the deformation of links AB 

and DC or the displacements of B 

and D.

• Work out the geometry to find the 

deflection at E given the deflections 

at B and D.
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Sample Problem 2.1

2 - 16

Displacement of B:

( )( )

( )( )
m10514

Pa1070m10500

m3.0N1060

6

926-

3

−−=



−
=

=
AE

PL
B

=  mm 514.0B

Displacement of D:

( )( )

( )( )
m10300

Pa10200m10600

m4.0N1090

6

926-

3

−=




=

=
AE

PL
D

=  mm 300.0D

Free body:  Bar BDE

( )

( )

ncompressioF

F

tensionF

F

M

AB

AB

CD

CD

B

   kN60

m2.0m4.0kN300

0M

   kN90

m2.0m6.0kN300

0

D

−=

−−=

=

+=

+−=

=





SOLUTION:
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Sample Problem 2.1
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Displacement of D:

( )

mm 7.73

mm 200

mm 0.300

mm 514.0

=

−
=

=




x

x

x

HD

BH

DD

BB

=  mm 928.1E

( )

mm 928.1

mm 7.73

mm7.73400

mm 300.0

=

+
=

=




E

E

HD

HE

DD

EE




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Static Indeterminacy

2 - 23

• Structures for which internal forces and reactions 

cannot be determined from statics alone are said 

to be statically indeterminate.

0=+= RL 

• Deformations due to actual loads and redundant 

reactions are determined separately and then added 

or superposed.

• Redundant reactions are replaced with 

unknown loads which along with the other 

loads must produce compatible deformations.

• A structure will be statically indeterminate 

whenever it is held by more supports than are 

required to maintain its equilibrium.  
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Example 2.4

2 - 32

Determine the reactions at A and B for the steel 

bar and loading shown, assuming a close fit at 

both supports before the loads are applied.

• Solve for the reaction at A due to applied loads 

and the reaction found at B.

• Require that the displacements due to the loads 

and due to the redundant reaction be 

compatible, i.e., require that their sum be zero.

• Solve for the displacement at B due to the 

redundant reaction at B.

SOLUTION:

• Consider the reaction at B as redundant, release 

the bar from that support, and solve for the 

displacement at B due to the applied loads.



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Example 2.4
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SOLUTION:

• Solve for the displacement at B due to the applied 

loads with the redundant constraint released, 

EEA

LP

LLLL

AAAA

PPPP

i ii

ii
9

L

4321

26
43

26
21

3
4

3
321

10125.1

m 150.0

m10250m10400

N10900N106000


==

====

====

====

−−



• Solve for the displacement at B due to the redundant 

constraint,

( )



−==

==

==

−==

−−

i

B

ii

ii
R

B

E

R

EA

LP
δ

LL

AA

RPP

3

21

26
2

26
1

21

1095.1

m 300.0

m10250m10400
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• Require that the displacements due to the loads and due to 

the redundant reaction be compatible,

( )

kN 577N10577

0
1095.110125.1

0

3

39

==

=


−


=

=+=

B

B

RL

R

E

R

E




• Find the reaction at A due to the loads and the reaction at B

kN323

kN577kN600kN 3000

=

 +−−==

A

Ay

R

RF

kN577

kN323

=

=

B

A

R

R
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Thermal Stresses

2 - 38

• A temperature change results in a change in length or 

thermal strain.  There is no stress associated with the 

thermal strain unless the elongation is restrained by 

the supports.  

( )

coef.expansion   thermal=

==




AE

PL
LT PT

• Treat the additional support as redundant and apply 

the principle of superposition.

( ) 0

0

=+

=+=

AE

PL
LT

PT





• The thermal deformation and the deformation from 

the redundant support must be compatible.

( )

( )TE
A

P

TAEP
PT

−==

−=

=+=





 0
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Poisson’s Ratio

2 - 59

• For a slender bar subjected to axial loading:

0=== zy
x

x
E






• The elongation in the x-direction is 

accompanied by a contraction in the other 

directions.  Assuming that the material is 

isotropic (no directional dependence),

0= zy 

• Poisson’s ratio is defined as

x

z

x

y








 −=−==

strain axial

strain lateral
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Generalized Hooke’s Law

2 - 63

• For an element subjected to multi-axial loading, 

the normal strain components resulting from the 

stress components may be determined from the 

principle of superposition.  This requires:

 1) strain is linearly related to stress

2) deformations are small

EEE

EEE

EEE

zyx
z

zyx
y

zyx
x










+−−=

−+−=

−−+=

• With these restrictions:
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Dilatation: Bulk Modulus

• Relative to the unstressed state, the change in volume is
( )( )( )   

( )

 e)unit volumper  in volume (change dilatation 

21

111111

=

++
−

=

++=

+++−=+++−=

zyx

zyx

zyxzyx

E

e








• For element subjected to uniform hydrostatic pressure,
( )

( )
modulusbulk  

213

213

=
−

=

−=
−

−=





E
k

k

p

E
pe

• Subjected to uniform pressure, dilatation must be 

negative, therefore

2
10 

2 - 67
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Shearing Strain

2 - 70

• A cubic element subjected to a shear stress will 

deform into a rhomboid.  The corresponding shear 

strain is quantified in terms of the change in angle 

between the sides,

( )xyxy f  =

• A plot of shear stress vs. shear strain is similar the 

previous plots of normal stress vs. normal strain 

except that the strength values are approximately 

half.  For small strains, 

zxzxyzyzxyxy GGG  ===

where G is the modulus of rigidity or shear modulus.
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Example 2.10
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A rectangular block of material with 

modulus of rigidity G = 90 ksi is 

bonded to two rigid horizontal plates.  

The lower plate is fixed, while the 

upper plate is subjected to a horizontal 

force P.  Knowing that the upper plate 

moves through 0.04 in. under the action 

of the force, determine a) the average 

shearing strain in the material, and b) 

the force P exerted on the plate.

SOLUTION:

• Determine the average angular 

deformation or shearing strain of 

the block.

• Use the definition of shearing stress to 

find the force P.

• Apply Hooke’s law for shearing stress 

and strain to find the corresponding 

shearing stress.
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• Determine the average angular deformation 

or shearing strain of the block.

rad020.0
in.2

in.04.0
tan == xyxyxy 

• Apply Hooke’s law for shearing stress and 

strain to find the corresponding shearing 

stress.

( )( ) psi1800rad020.0psi1090 3 === xyxy G

• Use the definition of shearing stress to find 

the force P.

( )( )( ) lb1036in.5.2in.8psi1800 3=== AP xy

kips0.36=P
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Relation Among E,  and G

2 - 73

• An axially loaded slender bar will 

elongate in the axial direction and 

contract in the transverse directions.  

( )+= 1
2G

E

• Components of normal and shear strain are 

related,

• If the cubic element is oriented as in the 

bottom figure, it will deform into a 

rhombus. Axial load also results in a shear 

strain.

• An initially cubic element oriented as in 

top figure will deform into a rectangular 

parallelepiped.  The axial load produces a 

normal strain.
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Sample Problem 2.5

2 - 82

A circle of diameter d = 9 in. is scribed on an 

unstressed aluminum plate of thickness t = 3/4 

in.  Forces acting in the plane of the plate later 

cause normal stresses x = 12 ksi and z = 20 

ksi.  

For E = 10x106 psi and  = 1/3, determine the 

change in: 

a) the length of diameter AB, 

b) the length of diameter CD, 

c) the thickness of the plate, and 

d) the volume of the plate.
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Sample Problem 2.5
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SOLUTION:

• Apply the generalized Hooke’s Law to 

find the three components of normal 

strain. 

( ) ( )

in./in.10600.1

in./in.10067.1

in./in.10533.0

ksi20
3

1
0ksi12

psi1010

1

3

3

3

6

−

−

−

+=

+−−=

−=

−+−=

+=







−−


=

−−+=

EEE

EEE

EEE

zyx
z

zyx
y

zyx
x










• Evaluate the deformation components.

( )( )in.9in./in.10533.0 3−+== dxAB 

( )( )in.9in./in.10600.1 3−+== dzDC 

( )( )in.75.0in./in.10067.1 3−−== tyt 

in.108.4 3−+=AB

in.104.14 3−+=DC

in.10800.0 3−−=t

• Find the change in volume

( ) 33

333

in75.0151510067.1

/inin10067.1

==

=++=

−

−

eVV

e zyx 

3in187.0+=V
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Composite Materials

2 - 84

• Fiber-reinforced composite materials are formed 

from lamina of fibers of graphite, glass, or 

polymers embedded in a resin matrix.

z

z
z

y

y
y

x

x
x EEE












===

• Normal stresses and strains are related by Hooke’s 

Law but with directionally dependent moduli of 

elasticity, 

x

z
xz

x

y
xy









 −=−=

• Transverse contractions are related by directionally 

dependent values of Poisson’s ratio, e.g.,

• Materials with directionally dependent mechanical 

properties are anisotropic.



MECHANICS OF MATERIALS Beer  • Johnston  • DeWolf

Dr. M. Aghayi                                        WhatsApp: +989394054409

Saint-Venant’s Principle

2 - 85

• Loads transmitted through rigid 

plates result in uniform distribution 

of stress and strain.

• Saint-Venant’s Principle:  

Stress distribution may be assumed 

independent of the mode of load 

application except in the immediate 

vicinity of load application points.

• Stress and strain distributions 

become uniform at a relatively short 

distance from the load application 

points.

• Concentrated loads result in large 

stresses in the vicinity of the load 

application point.
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Stress Concentration: Hole

2 - 86

Discontinuities of cross section may result in 

high localized or concentrated stresses. ave

max




=K
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Stress Concentration: Fillet
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Example 2.12

2 - 88

Determine the largest axial load P 

that can be safely supported by a 

flat steel bar consisting of two 

portions, both 10 mm thick, and 

respectively 40 and 60 mm wide, 

connected by fillets of radius r = 8 

mm.  Assume an allowable normal 

stress of 165 MPa.

SOLUTION:

• Determine the geometric ratios and 

find the stress concentration factor 

from Fig. 2.64b.

• Apply the definition of normal stress to 

find the allowable load.

• Find the allowable average normal 

stress using the material allowable 

normal stress and the stress 

concentration factor.
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Example 2.12

2 - 89

• Determine the geometric ratios and 

find the stress concentration factor 

from Fig. 2.64b.

82.1

20.0
mm40

mm8
50.1

mm40

mm60

=

====

K

d

r

d

D

• Find the allowable average normal 

stress using the material allowable 

normal stress and the stress 

concentration factor.

MPa7.90
82.1

MPa165max
ave ===

K




• Apply the definition of normal stress 

to find the allowable load.

( )( )( )

N103.36

MPa7.90mm10mm40

3=

== aveAP 

kN3.36=P
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Elastoplastic Materials

2 - 90

• Previous analyses based on assumption of 

linear stress-strain relationship, i.e., 

stresses below the yield stress

• Assumption is good for brittle material 

which rupture without yielding

• If the yield stress of ductile materials is 

exceeded, then plastic deformations occur

• Analysis of plastic deformations is 

simplified by assuming an idealized 

elastoplastic material

• Deformations of an elastoplastic material 

are divided into elastic and plastic ranges

• Permanent deformations result from 

loading beyond the yield stress
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Plastic Deformations

2 - 91

• Elastic deformation while maximum 

stress is less than yield stressK

A
AP ave

max
 ==

• Maximum stress is equal to the yield 

stress at the maximum elastic 

loading
K

A
P Y
Y


=

• At loadings above the maximum 

elastic load, a region of plastic 

deformations develop near the hole

• As the loading increases, the plastic 

region expands until the section is at 

a uniform stress equal to the yield 

stress
Y

YU

PK

AP

=

= 
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Residual Stresses

2 - 92

• When a single structural element is loaded uniformly 

beyond its yield stress and then unloaded, it is permanently 

deformed but all stresses disappear.  This is not the general 

result.

• Residual stresses also result from the uneven heating or 

cooling of structures or structural elements

• Residual stresses will remain in a structure after 

loading and unloading if

- only part of the structure undergoes plastic 

deformation

- different parts of the structure undergo different 

plastic deformations
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Example 2.13

2 - 93
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Example 2.13
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Example 2.14, 2.15, 2.16

2 - 95

A cylindrical rod is placed inside a tube 

of the same length.  The ends of the rod 

and tube are attached to a rigid support 

on one side and a rigid plate on the 

other.  The load on the rod-tube 

assembly is increased from zero to 5.7 

kips and decreased back to zero. 

a) draw a load-deflection diagram 

for the rod-tube assembly

b) determine the maximum 

elongation

c) determine the permanent set

d) calculate the residual stresses in 

the rod and tube. 

ksi36

psi1030

in.075.0

,

6

2

=

=

=

rY

r

r

σ

E

A

ksi45

psi1015

in.100.0

,

6

2

=

=

=

tY

t

t

σ

E

A
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Example 2.14, 2.15, 2.16
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a) draw a load-deflection diagram for the rod-

tube assembly

( )( )
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
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
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Example 2.14, 2.15, 2.16
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• at a load of P = 5.7 kips, the rod has reached the 

plastic range while the tube is still in the elastic range

( )

in.30
psi1015

psi1030

ksi30
in0.1
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kips0.3kips7.27.5
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6
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t

t
t

t

t

rt

rYr






in.1060 3
max

−== t

• the rod-tube assembly unloads along a line parallel 

to 0Yr

( ) in.106.4560
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Example 2.14, 2.15, 2.16
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• calculate the residual stresses in the rod and tube.

calculate the reverse stresses in the rod and tube 

caused by unloading and add them to the maximum 

stresses.
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( )( )

( )
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Sample Problem 2.6
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